2015/7/13 下午12:06:19 星期一
当前位置: 主页 > 至理名言 >

工业物联网发展几大365体育官网: 阶段,你在哪个位置?
时间:2019-05-31 19:09

工业物联网发展几大阶段,你在哪个位置?

时间:12-22 10:44 阅读:5273次 转载来源:亿欧

近几年,工业物联网发展的如火如荼,各种服务商、集成商如雨后春笋不断涌现,逐鹿市场。但工业物联网在工业制造中部署落地的情况却不容乐观,那么,发展工业物联网,难度究竟在哪里?或者说哪些能力才是工业物联网厂商们的核心竞争力?

我们将工业物联网的技术应用分为以下七层:

层级L1、C1: 设备联网,数据采集

随着工业物联网的快速发展,很多传统的工业制造企业将目光转向了设备数据,要实现智慧管理、数据处理,第一步需要拿到设备数据。那么对于工业设备来说,数据采集很难么?设备生产厂家自己不能做?当然不是。

其实工业设备数据采集,就是做一个硬件终端,与设备交互,只要弄明白交互的物理接口、交互协议、数据类型等,这个事情就不难。但拥有协议的设备厂家,为何自身没做数据采集,而是通过第三方来获取数据,其中的难点不在数据采集本身,因为工业设备的数据具有海量且无序的特点。

除了数据采集,还要对数据进行存储、分类、处理等等,这些都是厂家需要面临和解决的问题。中国制造业现状决定数据采集将是非常大的市场需求,正催生了大量的硬件制造商、数据采集集成商等提供基础数据互通能力的服务企业。

层级L2、C2:数据接收,数据存储,云平台

云平台很难吗?设备生产厂家自己做不了,其他软件公司不能做吗?MQTT就是物联网了吗?

当然是否定的。

云平台的难度当然比做一个数据采集终端要难一些,但云平台归根到底,还是一个解决终端规模接入处理能力,如何解决大规模并发的数据存储问题,这也是一个纯粹的技术问题,即便设备厂家做不了,还是有很多物联网公司能去做这件事,例如阿里云、华为云、汇川等企业。看中的正是它们的云部署能力和雄厚的实力,对于云中部署的数据有比较高的保障,这是一般的企业想做也没有能力做好的。

层级L3、C3:数据处理

云平台虽然解决了数据接收和存储需求,但业内人都知道,这是非常复杂的时序数据存储。数据被保存到云平台后,该怎么处理?这件事情是想着简单,实际部署却有一定难度。

所谓数据处理,就是把数据进行高度的抽象,并进行必要的处理,让这些数据更加有序的保存,高效的检索,便于后续的数据应用、统计、分析计算。

数据处理这个环节,事实上很容易被忽略,绝大多数物联网服务商并不明白数据处理是怎么回事,更不知道如何去做好数据处理,只能把采集到保存过程中的数据直接应用,这就带来一系列问题:

面临大量数据,只能展现零散的数据,而无法准确判断数据关联关系,且无法辅助决策等等。到了这一层,各类物联网企业的实力差距就已经明显体现出来,能够有效处理数据的企业往往能够更快速的切入行业,为客户提供数据价值。

层级L4、C4:数据分析,分析结果应用

物联网平台开始走向平民化,非IT的专业人士可以轻松上手工业APP应用,对于绝大多数企业也无多大难度。

数据分析对工业物联网来说,365体育投注,两个方面:

A分析数据,形成分析结果,这是数据分析必须要做的一个基础的事情。

B合理应用分析结果。

现阶段的工业物联网企业,普遍还处在第一个“分析数据”,极少数开始做第二个。

分析是手段,而非目的,分析的目的就是要把分析的结果应用起来。对于智物联而言,分析的目的即是实现安全生产+节能减排+提高效率。这件事情是一件实实在在的事情,只是吹捧概念、无法真正落地的企业是很难做到预测性维护。智物联已经实现了设备连接、数据处理、业务应用的综合使能平台,可以面向各类工业场景应用,并处理各种设备和数据,目前的工业设备接入量达20万台,累积超过10T的工业运行数据。

层次L5、C5:工业物联网体系化建设

工业物联网体系化建设,是工业物联网解决方案提供商最值得自豪的地方,在某种程度上,这也是区别于其他物联网企业的地方,是企业在市场竞争中真正的软实力。

在物联网洪流中,也许做数据采集、云平台、数据处理、数据分析的人或者企业会很多,但真正形成一个完整体系的却甚少。思科就是一个行业典范,当他们研制出第一台网络路由器的时候,这台路由器已经是思科体系中的成员了,他们的体系中包括了产品系列、产品线、思科标准、思科统一脚本语言等。

这件事情如果不是一开始做好,后面体系基本上是无法建设和完善的。

层次L6、C6:商业模式

工业物联网的商业模式,与互联网模式有很大的不同,一不留神就会陷入困境。

拿智物联来说,很早便瞄准了—设备生产厂家,我们认为这是一条直接敲开设备数据大门的最佳路径。