2015/7/13 下午12:06:19 星期一
当前位置: 主页 > 至理名言 >

行业 | 听说边缘计365体育:算与物联网要搞事情?
时间:2019-05-31 17:56

分享到

行业 | 听说边缘计算与物联网要搞事情?

时间:01-29 13:42 阅读:4543次 转载来源:Thundersoft中科创达

边缘计算能就近提供智能互联服务,满足行业在数字化变革过程中的关键需求。在物联网时代,不断增长的数据催生了对边缘计算的需求,据预测,未来超过50%的数据需要在网络边缘侧分析、处理和储存。其巨大的市场空间也被玩家们看在眼里,2019边缘计算还将如何更好地推动物联网技术发展?这里列出了7个有关边缘计算和物联网的预测。

01

衡量计算方面的交付能力

随着越来越多的IoT项目采用以云为中心的解决方案,人工智能(AI)和IoT下一步要解决的问题是如何使用较少的资源,将算法带到边缘侧。

据预测,在未来四年内75%的企业生成的数据将在边缘处理(相对于云计算),而今天只有不到10%公司会这样做。数据的大量增加,更高的保真度分析,更低的延迟要求,安全问题和巨大的成本优势这些因素都催生了边缘计算的兴起。

虽然云是存储数据和训练机器学习模型的好地方,但它不能提供高保真的实时流数据分析。相反,边缘技术可对所有的原始数据提供高可靠性地分析,并能检测各种异常,最重要的是能做出实时反应。

02

正确分辨“真”与“假”边缘解决方案

与所有热门新技术一样,市场已逐渐失去“边缘计算”这一术语,但在IoT部署中没有明确的界限。“假”边缘解决方案声称他们可以在边缘处理数据,但实际上采取的方法是将数据发送回云端,然后进行批量或微批处理。

当人们阅读边缘计算时,365娱乐场体育投注,会认为假的解决方案中没有复杂事件处理器(CEP),这意味着该解决方案的延迟更高且数据仍然“脏”,分析不准确,ML模型显著受损。

“真正的”边缘智能始于超高效的CEP,CEP可以清理,规范化,过滤原始数据流。此外,“真正的”边缘解决方案包括集成的ML和AI功能,这些功能都需要嵌入到大大小小的边缘计算设备中。

CEP功能应在边缘现场实现实时,可操作的分析,并为操作技术(OT)人员提供快速修复、优化的用户体验。它还为ML / AI分析提供数据,方便系统生成高质量的预测见解,以推动资产绩效和流程改进。

03

ML和AI模型将变得很脆弱

将机器学习转移到边缘不仅仅是改变处理数据的位置,目前使用的大多数ML模型都是都是基于云计算能力、运行时间而设计的。由于这些假设在边缘处都不成立,因此ML模型必须适应新环境。

换句话说,他们需要“边缘化”。在2019年,“真正的边缘”解决方案将使数据预处理和后处理从ML模型重新定位到复杂的事件处理器,并使模型更接近数据资源。这个过程称为edgification,它将推动整个行业采用更强大的边缘计算和IoT应用程序。

04

机器学习将成为真正的操作解决方案

随着ML和AI算法在传感器附近或物联网网关中的应用变得更加成熟,关于如何训练和进一步迭代这些模型的最佳实践将会出现

行业内相关组织会发现,在实时流数据(包括音频和视频)上生成分析的边缘设备应定期将结果发送回云,只有那些发现异常数据的设备才是核心算法需要关注的地方。

05